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Abstract
We study the response of a spin glass system with respect to the rescaling of its
interaction random variables and investigate numerically the behaviour of the
correlation functions with respect to the volume. While for a ferromagnet the
local energy correlation functions increase monotonically with the scale and,
by consequence, with respect to the volume of the system we find that in a
general spin glass model those monotonicities are violated.

PACS numbers: 05.50.+q, 75.50.Lk

(Some figures in this article are in colour only in the electronic version)

When spins interact in a ferromagnetic system they tend to be aligned. That simple fact is
reflected in structural properties of the statistical mechanics equilibrium state called Griffiths
inequalities [1, 2] or more generally GKS [3] inequalities.

The first inequality states that the pressure of a spin system (minus the free energy times
beta) does increase with the strength of each interaction among spins. The second says that
the correlation among any set of spins increases with respect to the strength of the interaction
of any other set of them.

Since the strength of the interaction allows us to switch on and off new parts of the system,
the mentioned monotonicity properties can be easily turned into new ones like monotonicity
with respect to the volume or with respect to the system dimensionality. All those properties
are at the origins of the fruitful applications of those inequalities to prove rigorous results
in statistical mechanics, like the existence of the thermodynamic limit for pressure and
correlations, bounds for critical temperatures and exponents [4] and their mutual relations
for different systems.

While the physical meaning of the Griffiths inequalities was clear and well understood
much earlier than rigorously proved, for disordered systems like spin glasses there are no
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a priori evident monotonicity properties due to the lack of ferromagnetism and the presence
of competition (frustrated loops [5]).

The first case to be understood has been the Gaussian interaction. The use of the partial
integration led to the first general proof of existence and monotonicity of thermodynamic limit
for the pressure of a d-dimensional spin glass model with general potential [6, 7]. Defining
the potential

U�(J, σ ) =
∑
X⊂�

JXσX, (1)

where the coefficients JX are a Gaussian family distributed as

Av(JX) = 0, Av(JXJY ) = �2
XδX,Y (2)

with its associated random Gibbs–Boltzmann state ω and the quenched measure as

〈−〉 = Av[ω(−)] (3)

a straightforward computation [6, 7] gives

〈JXσX〉 = �2
XAv

(
1 − ω2

X

)
, (4)

which turns out to be positive by inspection. Although it was clear that the former positivity
comes from convexity, it was recognized only few years later that the same result holds in
full generality for random interaction JX with zero average and not only for centred Gaussian
variables: in [8] it is proved that (4) can be simply derived from thermodynamic convexity.

A natural perspective to look at the former inequalities is to consider the deformation of
the general centred random variable JX as λXJX with λX > 0. The quenched pressure P as a
function of the set of lambda’s has first and second derivatives

∂P

∂λX

= 〈JXσX〉 � 0 (5)

∂2P

∂λX∂λY

= ∂〈JXσX〉
∂λY

= Av[JXJY (ωXY − ωXωY )]. (6)

The two quantities (5) and (6) have been extensively studied in d = 1 with nearest-
neighbour interaction and periodic (or free) boundary conditions in [9]: the sign of (5) also
remains positive by shifting on positive values the J averages; the value of (6) turns out to
be non-positive for zero mean and positive variance interactions and changes its sign when
crossing a line in the mean-variance plane toward the ferromagnetic regime of zero variance
and positive mean.

This paper deals with the study of the sign of (6) for higher dimensions or different
topologies for the case with zero average interaction. Our findings can be summarized as
follows: (6) does not have a definite sign. An explicit counterexample is found, for instance,
in the case of a nearest-neighbour spin chain with an extra interaction connecting two distant
spins. In principle, a specific topology could not affect the monotonicity in the volume.
For this reason we test numerically the nearest-neighbour correlation function for two- and
three-dimensional systems of increasing size and find an oscillating behaviour.

Let us consider a closed chain of six spins with nearest-neighbour interaction with one
added interaction between the spins two and five. The dependence of the partition function
on the couplings J1,2 and J2,3 is:

Z =
∑

σ

exp
(
β

∑
Ji,j σiσj

)
= a cosh(βJ1,2) cosh(βJ2,3)

+ b sinh(βJ1,2) cosh(βJ2,3) + c cosh(βJ1,2) sinh(βJ2,3)

+ d sinh(βJ1,2) sinh(βJ2,3),
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where the four coefficients are

a =
⎛
⎝ ∏

(i,j)�=(1,2),(2,3)

cosh(βJi,j )

⎞
⎠ ·

∑
∂B=∅

⎛
⎝ ∏

(i,j)∈B

tanh(βJi,j )

⎞
⎠ ,

b =
⎛
⎝ ∏

(i,j)�=(1,2),(2,3)

cosh(βJi,j )

⎞
⎠ ·

∑
∂B=(1,2)

⎛
⎝ ∏

(i,j)∈B

tanh(βJi,j )

⎞
⎠ ,

c =
⎛
⎝ ∏

(i,j)�=(1,2),(2,3)

cosh(βJi,j )

⎞
⎠ ·

∑
∂B=(2,3)

⎛
⎝ ∏

(i,j)∈B

tanh(βJi,j )

⎞
⎠

d =
⎛
⎝ ∏

(i,j)�=(1,2),(2,3)

cosh(βJi,j )

⎞
⎠ ·

∑
∂B=(1,2)∪(2,3)

⎛
⎝ ∏

(i,j)∈B

tanh(βJi,j )

⎞
⎠ .

The truncated correlation function is now

ω12,23 − ω12ω23 = 16
ad − bc

Z2
.

By gauge invariance the Bernoulli random model can be reduced to one in which the
randomness is concentrated on the two couplings J1,2 = ±1, J2,3 = ±1 with probability
1/2, and the remaining others Ji,j = 1.

Let us introduce the notation: C := cosh(β), S := sinh(β), T := tanh(β) and T12 :=
tanh(βJ1,2), T23 := tanh(βJ2,3) (and similarly for sinh and cosh).

We will indicate with Z(+, +), Z(+,−), Z(−, +) and Z(−,−) the partition functions
computed with fixed values of J1,2 and J2,3.

An explicit computation gives

a = C5; b = c = C5T 3; d = C5T 4 ⇒ ad − bc = C10T 4(1 − T 2)

and

Z = C5C1C2[1 + T12T
3 + T23T

3 + T12T23T
4]

⇒Z(++) = C7[1 + 2T 4 + T 6]

Z(+−) = Z(−+) = C7[1 − T 6]

Z(−−) = C7[1 − 2T 4 + T 6].

Finally

Av[J1,2J2,3(ω12,23 − ω12ω23)] = 16C10T 4(1 − T 2)AV

[
J1,2J2,3

Z2

]

= 16C10T 4(1 − T 2)

{
1

Z2(++)
+

1

Z2(−−)
− 2

Z2(+−)

}

= 16T 4(1 − T 2)

C4

{
1

(1 + 2T 4 + T 6)2
+

1

(1 − 2T 4 + T 6)2
− 2

(1 − T 6)2

}

= 16T 4(1 − T 2)

C4

8T 6[−1 + 3T 2 − 2T 6 + 2T 8 − 4T 10 − T 12 + 3T 14]

(1 + 2T 4 + T 6)2 · (1 − 2T 4 + T 6)2 · (1 − T 6)2
.

In order to compute the sign, we notice that the square parenthesis term is

[−1 + 3T 2 − 2T 6 + 2T 8 − 4T 10 − T 12 + 3T 14]

=
[
C2(S2 − 1)(C8 − S8) + 2S4(C8 − S8) + S8(C2 + S2)

C14

]
.
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Figure 1. Av[Jbωb] as a function of L for the two-dimensional lattice with Gaussian and Bernoulli
coupling, for two different temperature values t = 0.5 and t = 1.5 each.

The only term with possible sign change is (S2 − 1). For small β the leading term is then
−cosh10(β), which gives a negative contribution, while for large β everything is positive.

A plot of the function Av[J1,2J2,3(ω12,23 − ω12ω23)] shows a change of sign around
β = 0.695.

The numerical test is performed for d-dimensional cubic lattices � of volume N = Ld ,
with d = 2, 3. We analyse two cases of quenched disorder: the Bernoulli couplings with
Ji,j = ±1 and the Gaussian couplings with zero mean and unit variance.

Given a spin configuration σ for a system of linear size L, we consider the observable

Av[Jbωb], (7)

where b = (i, j) with i, j ∈ �, |i − j | = 1, ωb is the thermal average of the quantity σiσj

and Av[·] is the average over the quenched disorder.
With a parallel-tempering algorithm [10] we investigate the correlation (7) for lattice sizes

ranging from L = 3 to L = 24 in the case d = 2 and from L = 3 to L = 10 in the case d = 3.
For each size we consider at least 2048 disorder realizations and, in order to thermalize the
large sizes, we choose up to 37 temperature values in the range 0.5 � t � 2.3, in which the
critical temperatures of the three-dimensional models (tc 	 0.95 for the Gaussian model [11]
and tc 	 1.15 for the Bernoulli model [12]) are contained. The thermalization in the parallel
tempering procedure is tested by checking the symmetry of the probability distribution for the
standard overlap q under the transformation q → −q. Moreover, for the Gaussian coupling
case another thermalization test is available: the internal energy can be calculated both as
the temporal mean of the Hamiltonian or, using integration by parts, as the expectation of a
simple function of the link overlap [13]. We checked that with our thermalization steps both
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Figure 2. Av[Jbωb] as a function of L for the three-dimensional lattice with Gaussian and Bernoulli
coupling and for two different temperature values t = 0.5, and t = 1.5 each.

Table 1. Parameters of the simulations: linear system size, number of sweeps used for
thermalization, number of sweeps for measurement of the observable, number of disorder
realizations, number of temperature values allowed in the parallel tempering procedure, temperature
increment, minimum and maximum temperature values.

L Therm Equil Nreal nt δt tmin tmax

Two-dimensional lattice Ld, d = 2
3–12 50 000 50 000 4096 19 0.1 0.5 2.3
16 50 000 50 000 2048 19 0.05 0.5 2.3
24 50 000 50 000 2600 19 0.05 0.5 2.3

Three-dimensional lattice Ld, d = 3
3–6 50 000 50 000 2048 19 0.1 0.5 2.3
8 50 000 50 000 2680 19 0.1 0.5 2.3
10 70 000 70 000 2048 37 0.05 0.5 2.3

measurements converge to the same value. All the parameters used in the simulations are
reported in table 1.

The numerical results are displayed in figures 1 and 2, where the correlation (7) is
represented as a function of the linear system size L for different temperatures both for the
two- and three-dimensional system. We find that the correlation oscillates with respect to
L, independently of the couplings (Bernoulli and Gaussian), of the temperatures and the
dimension d (d = 2, 3).

5



J. Phys. A: Math. Theor. 41 (2008) 385001 P Contucci et al

The results presented here show that the monotonocity properties typical of ferromagnetic
systems are clearly violated for spin glass models. Further effort is necessary to establish if
the quantity (6) can keep a definite sign for specific lattice geometries or may depend on the
relative position of the two sets X and Y.
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